Module 5: Radar Detection and Ambiguity

This module delves into the theoretical underpinnings of target detection in
radar systems and explores the inherent limitations and trade-offs that arise
from the nature of radar signals and their processing. We will cover the
statistical methods used to decide the presence of a target, the optimal
processing techniques for maximizing detection performance, and the
fundamental limitations on a radar's ability to uniquely identify targets in both
range and velocity.

5.1 Detection Theory Fundamentals

Radar detection is fundamentally a decision-making process under
uncertainty. The receiver continuously processes echoes that contain not only
potential target signals but also inevitable noise and sometimes clutter. The
challenge is to distinguish a genuine target echo from random fluctuations
caused by noise. This is addressed through the principles of hypothesis
testing.

5.1.1 Introduction to Hypothesis Testing

In the context of radar detection, we essentially have two competing
hypotheses about the received signal in any given time-frequency cell:

e Hypothesis HO (Null Hypothesis): Only noise is present. This
corresponds to the scenario where there is no target.
r(t)=n(t)
where r(t) is the received signal and n(t) is the noise.

e Hypothesis H1 (Alternative Hypothesis): A target signal is present along
with noise. This corresponds to the scenario where a target exists.
r(t)=s(t)+n(t)
where s(t) is the target signal and n(t) is the noise.

The radar receiver's task is to decide between HO and H1 based on the
received data. This decision is made by comparing a calculated "test statistic™
(derived from the received signal) against a predetermined detection
threshold. If the test statistic exceeds the threshold, H1 is chosen (target
detected); otherwise, HO is chosen (no target detected).

There are two types of errors that can occur in this decision process:

e Type | Error (False Alarm): Deciding H1 is true when HO is actually true.
This means declaring a target when only noise is present. The
probability of this error is called the Probability of False Alarm (Pfa). A
false alarm consumes resources (e.g., operator attention, tracking
system processing) and can lead to incorrect tactical decisions.



e Type Il Error (Missed Detection): Deciding HO is true when H1 is actually
true. This means failing to detect a target that is actually present. The
probability of this error is called the Probability of Missed Detection
(PM). This is equivalent to 1-Pd, where Pd is the Probability of
Detection. A missed detection can have severe consequences,
especially in critical applications like air traffic control or defense.

The goal of radar detection theory is to minimize the probability of these
errors, or to manage the trade-off between them, given the inherent
uncertainty introduced by noise.

5.1.2 Receiver Operating Characteristics (ROC) Curves

Receiver Operating Characteristics (ROC) curves are a powerful tool used to
visualize and analyze the performance of a detection system, such as a radar
receiver. An ROC curve plots the Probability of Detection (Pd) against the
Probability of False Alarm (Pfa) for various possible settings of the detection
threshold.

Each point on an ROC curve represents a different threshold setting.

e Moving the threshold lower (more lenient decision) increases both Pd
and Pfa.

e Moving the threshold higher (more stringent decision) decreases both
Pd and Pfa.

A "perfect" detection system would have an ROC curve that goes from (0,0)
directly to (0,1) and then to (1,1), meaning it can achieve a Pd of 1 (100%
detection) with a Pfa of 0 (no false alarms). In reality, there is always a
trade-off.

Key characteristics of ROC curves:

e Shape: For a given Signal-to-Noise Ratio (SNR), the ROC curve is
unique. A higher SNR shifts the curve towards the upper-left corner of
the plot, indicating better detection performance (higher Pd for a given
Pfa, or lower Pfa for a given Pd).

e Independent of Threshold: The ROC curve itself does not depend on the
specific threshold value. Instead, the curve shows what performance is
achievable by varying the threshold.

e Performance Comparison: ROC curves are invaluable for comparing the
performance of different radar systems or different detection algorithms.
A system whose ROC curve is closer to the upper-left corner is superior.

e Probability of False Alarm (Pfa): This is usually set to a very small,
acceptable value (e.g., 10-6 or 10-8) to ensure that the operator is not
overwhelmed by false targets.



e Probability of Detection (Pd): This is what we want to maximize for the
chosen Pfa. A typical requirement might be Pd=0.9 (90% detection).

How to read an ROC curve:

1. Choose an acceptable Pfa value on the x-axis.

2. Move vertically up to the ROC curve.

3. Then move horizontally to the left to find the corresponding Pd value on
the y-axis.

In-depth Explanation:

ROC curves are derived from the probability density functions (PDFs) of the
receiver output for both the "noise only" case (H0) and the "signal plus noise"
case (H1). The overlap between these two PDFs dictates the inherent trade-off.
For higher SNR, the PDFs are more separated, leading to less overlap and thus
better performance on the ROC curve. The optimal decision criterion for
detecting a signal in the presence of noise, assuming Gaussian noise and
known signal characteristics, is often based on the Neyman-Pearson criterion,
which states that for a fixed Pfa, the detection threshold should be chosen to
maximize Pd.

5.2 Matched Filtering

Matched filtering is a fundamental concept in radar signal processing that
ensures optimal detection performance. It is a filter designed to maximize the
output Signal-to-Noise Ratio (SNR) when a known signal is corrupted by
additive white Gaussian noise (AWGN).

5.2.1 Principle of the Matched Filter

The principle of the matched filter is that its impulse response is the
time-reversed and conjugated version of the known signal waveform that it is
trying to detect. If the input signal is s(t), the impulse response of the matched
filter h(t) is given by:

h(t)=s*(T-t)
where:

o sx(t) denotes the complex conjugate of the signal s(t).

e T is the duration of the signal (or a time constant that shifts the output
peak to a convenient time, often chosen such that the peak output
occurs at t=T).



When the radar echo s(t) passes through a filter with impulse response h(t),
the output of the filter y(t) is the convolution of the input signal and the filter's
impulse response:

y(t)=s(t)*h(t)=[-wos(T)h(t-T)dT
Substituting h(t)=s*(T-t):
y(t)=[-ows(T)s%(T—(t-1))dT1=/-2005(T)s*(T-t+T)dT

At the specific time t=T (when the signal is optimally aligned with the filter), the
output is:

y(T)=]-ws(T)s*(T)dT=/—0 | 5(T) | 2dT=ES

where Es is the total energy of the signal. This shows that the matched filter
output peaks at a value equal to the signal energy when the signal is perfectly
matched to the filter.

The core idea is that the filter acts as a correlator. It continuously correlates
the incoming noisy signal with a replica of the expected target waveform.
When the target echo is present and perfectly aligned in time, the correlation
peaks, providing the maximum possible SNR at that specific instant.

5.2.2 Derivation of Optimal SNR

Let's consider a simplified derivation. Suppose the received signal is
x(t)=s(t)+n(t), where s(t) is the signal and n(t) is white Gaussian noise with a
power spectral density of N0/2. The goal is to find a filter h(t) that maximizes
the output SNR at a specific time T.

The output signal power at time T is |ys(T)|2, where ys(T) is the output when
only the signal is input.

ys(T)=/-=«S(f)H(f)ej2mfTdf (using Fourier transforms, where S(f) and H(f) are
the Fourier transforms of s(t) and h(t)).

The output noise power is Noise Power=2N0j-«< | H(f) | 2df.
The instantaneous SNR at the output is:
SNRout=Noise Power|ys(T)|2=2N0|-~= | H(f) | 2df | [-~«S(f)H(f)ej2rfTdf | 2

Using the Cauchy-Schwarz inequality, which states that
| lg1(f)g2(f)df| 2<] | g1(f) | 2df | g2(f) | 2df, with g1(f)=S(f)ej2rfT and g2(f)=H(f), we
can find the condition for maximum SNR.

The maximum occurs when H(f) is proportional to S*(f)e=j21rfT.



Thus, H(f)=kS*(f)e—j2mrfT for some constant k.
Taking the inverse Fourier Transform of H(f) to find h(t):
h(t)=ks*(T-t)

This confirms that the impulse response of the matched filter is the
time-reversed and conjugated version of the signal.

When this condition is met, the maximum output SNR achieved by the
matched filter is:

SNRout,max=N02Es

where Es=[-=« |s(t) | 2dt is the total energy of the signal, and N0/2 is the
two-sided power spectral density of the white Gaussian noise.

In-depth Explanation:

This formula is incredibly significant. It states that the maximum achievable
SNR at the receiver output, and therefore the best possible detection
performance, depends only on the total energy of the received signal and the
noise power spectral density, not on the specific shape of the waveform. This
means that a long, low-power pulse can achieve the same detection
performance as a short, high-power pulse, provided their total energies are
equal. This principle is exploited in pulse compression techniques, where
long, coded pulses are transmitted to achieve high total energy (and thus long
range) while maintaining good range resolution (due to the effective short
duration after compression). The matched filter effectively performs this pulse
compression.

Numerical Example:

Consider a radar system transmitting a rectangular pulse with a peak power of
Ppeak=1 MW and a pulse width $\tau = 1 \text{ \textmu s}$.

The received echo signal has an amplitude such that its energy Es=10-14 J.
The receiver noise has a power spectral density N0=4x10-20 W/Hz.

What is the maximum SNR achievable at the matched filter output?

Given:

Es=10-14J

N0=4x10-20 W/Hz



SNRout,max=N02Es=4x10-20 W/Hz2x10-14 J
SNRout,max=4x10-202x10-14=0.5%x106=500,000
In decibels (dB):
SNRdB=10l0g10(500,000)=56.99 dB

This high SNR indicates very strong detection capability for this particular
received signal energy and noise level.

5.3 Radar Ambiguity Function

The Radar Ambiguity Function is a powerful mathematical tool that
characterizes the resolution capabilities and inherent ambiguities of a radar
waveform in both range and Doppler (velocity). It helps radar designers
understand how well a particular waveform can distinguish between multiple
targets and how susceptible it is to various forms of ambiguity.

5.3.1 Definition

The ambiguity function, often denoted as x(r,fd), is a two-dimensional function
of time delay (1) and Doppler frequency (fd). It essentially represents the
output of a matched filter when the received signal is a Doppler-shifted and
time-delayed version of the transmitted signal.

For a complex envelope of a transmitted signal u(t), the ambiguity function is
defined as:

X(7,fd)=/-wou(t)ux(t-T)ej2rrfdtdt
where:

e ux(t-T1) is the complex conjugate of the time-delayed signal.
o ej2mfdt accounts for the Doppler shift.

The magnitude squared, |x(t,fd)|2, is often plotted and represents the output
power of the matched filter as a function of range and Doppler mismatches.

In-depth Explanation:

The peak of the ambiguity function, at x(0,0), corresponds to a perfectly
matched filter output for a target with zero time delay and zero Doppler shift
(i.e., the target at its true range and velocity). Any deviation from this peak
along the 1 or fd axes represents a mismatch. The shape of the ambiguity
function around this peak reveals the radar's resolution characteristics. Its
behavior far from the peak indicates potential ambiguities.



5.3.2 Properties

The ambiguity function has several important properties that provide insights
into radar waveform design:

Peak Value: The maximum value of the ambiguity function occurs at 1=0
and fd=0, where |x(0,0)|2=Es2, the square of the signal energy. This
confirms that the matched filter output is maximized for the correct
range and Doppler.
Volume Invariance: The volume under the magnitude squared of the
ambiguity function is constant and equal to the square of the signal
energy:
[~e0e0[—c000 | y(7,fd) | 2dTdfd=Es2
This is a crucial property: it means that improving resolution in one
domain (e.g., range) often comes at the expense of resolution or
increased ambiguity in the other domain (Doppler), or by increasing
side-lobes elsewhere in the ambiguity plane. You cannot arbitrarily
improve both resolutions simultaneously for a given signal energy.
Resolution:

o Range Resolution: The width of the ambiguity function along the T

axis (at fd=0) determines the range resolution. A narrow peak
along this axis indicates good range resolution. This is generally
achieved with short pulses or wideband signals (like chirps after
pulse compression).

Doppler Resolution: The width of the ambiguity function along the
fd axis (at T=0) determines the Doppler (velocity) resolution. A
narrow peak along this axis indicates good Doppler resolution.
This is generally achieved with long pulse durations (which allow
for more cycles of the Doppler shift to be observed) or long
observation times.

e Ambiguities: Side-lobes in the ambiguity function, away from the main

peak, indicate potential ambiguities.
o Range Ambiguity: If there are significant peaks along the T axis at

non-zero T (and fd=0), it implies that a target at a different range
might produce a response similar to a target at the true range.
This is common with periodic pulse trains (PRF ambiguities).
Doppler Ambiguity (Blind Speeds): If there are significant peaks
along the fd axis at non-zero fd (and 1=0), it implies that targets
with different Doppler shifts (velocities) might produce similar
responses. This leads to "blind speeds" in pulsed radar, where
targets with certain velocities produce zero or minimal Doppler
shift relative to the pulse repetition frequency.

e Types of Waveforms and their Ambiguity Functions:

o Single Rectangular Pulse: Has an ambiguity function shaped like

a "thumbtack" or "sombrero" with a broad base, indicating poor



resolution in both range and Doppler if the pulse is long. The main
lobe is wide in both dimensions.

o Long CW Pulse (or unmodulated pulse): Has a very narrow ridge
along the Doppler axis and a very wide spread along the range
axis. Excellent Doppler resolution, terrible range resolution.

o Linear FM (LFM) Chirp: Produces a "knife-edge" or "diagonal
ridge" ambiguity function. It offers good range resolution (due to
pulse compression) and good Doppler resolution, but it has a
coupling between range and Doppler (a target with certain range
and velocity can appear at a different range if processed with an
incorrect Doppler assumption). This is known as range-Doppler
coupling.

o Pulse Train (unmodulated pulses at fixed PRF): Leads to multiple
peaks (ambiguities) in both range (due to PRF) and Doppler (due
to PRF, causing blind speeds). The ambiguity function becomes a
repeating "bed of nails."

5.3.3 Role in Characterizing Resolution Capabilities and Ambiguities
The radar ambiguity function serves as a critical tool for radar engineers to:

e Select Optimal Waveforms: By analyzing the ambiguity function of
different waveforms, designers can choose a waveform that best suits
the application's requirements (e.g., high range resolution for imaging,
high Doppler resolution for velocity measurement, or a balance of both).

e Understand Trade-offs: The volume invariance property highlights the
inherent trade-offs in waveform design. It's impossible to have
simultaneously perfect resolution in both range and Doppler with a finite
energy signal. Improving one often degrades the other or creates
undesirable side-lobes (ambiguities).

e Predict Performance: The ambiguity function can predict how well a
radar will be able to separate multiple targets in a complex scenario, and
how susceptible it will be to false targets due to ambiguities.

e Design Processing Algorithms: Knowledge of the ambiguity function
helps in designing signal processing algorithms, such as those for
pulse compression, that account for the waveform's characteristics and
mitigate ambiguities. For example, using different PRFs ("staggered
PRF") or frequency diversity can mitigate blind speeds and range
ambiguities.

Numerical Example: Range-Doppler Coupling in LFM

A radar uses an LFM chirp with a pulse width $\tau = 10 \text{ \textmu s}$ and a
bandwidth AF=10 MHz.



The range-Doppler coupling for an LFM chirp is approximately
AR=-vrfcenterTsweep. (A more specific expression is AR=-TeffreffAFTOvr for a
specific definition of effective pulse duration and bandwidth).

A simpler approximation relating to the ambiguity function's diagonal ridge is
that a Doppler shift Afd can be interpreted as an equivalent range error
ARequiv. For an LFM signal, this relationship is:

ARequiv=-2cAFTAfd

Let's use a common form related to the slope of the ambiguity function's main
ridge. The slope of the main ridge in the 1-fd plane for an LFM signal is often
given as a=-AFr.

If a target has a true Doppler shift of 100 Hz but is incorrectly assumed to have
0 Hz (due to a processing error or blind speed), what is the apparent range
error?

Let's simplify and use the approximate relation for range-Doppler coupling due
to a Doppler error for an LFM chirp. The range measurement error AR due to
an uncompensated Doppler shift Afd is:

AR=-2AFcTtpAfd

where 1p is the pulse duration and AF is the frequency deviation of the chirp.
Given:

$\tau_p = 10 \text{ \textmu s} = 10 \times 10*{-6} \text{ s}$

AF=10 MHz=10%106 Hz

Afd=100 Hz

c=3x108 m/s

AR=-2%(10%x106 Hz)(3%x108 m/s)x(10x10—-6 s)x100 Hz
AR=-2x1073x102x100=-20,000,000300%100=—0.000015%x100=-1.5 m

This means an uncompensated Doppler error of 100 Hz for this LFM waveform
could result in a range error of =1.5 meters. This illustrates how Doppler and
range measurements are coupled in LFM waveforms.

5.4 Probability of False Alarm and Detection

The Probability of False Alarm (Pfa) and the Probability of Detection (Pd) are
the two most critical metrics for evaluating radar detection performance. They



are intrinsically linked and represent the trade-offs inherent in any statistical
decision-making process.

5.4.1 Detailed Analysis of Pfa and Pd
Probability of False Alarm (Pfa):

Pfa is the probability that the radar receiver declares a target present when, in
reality, only noise (or clutter) is present.

Pfa=P(Detect|Noise Only)

A false alarm occurs when the noise-only voltage at the detector output
exceeds the set detection threshold (VT).

The Pfa is determined by:

1. The statistical distribution of noise: For random noise, it's often
modeled as Gaussian (or Rayleigh after envelope detection). The shape
of this distribution dictates how likely it is for noise to exceed a certain
threshold.

2. The detection threshold (VT): A higher threshold reduces Pfa (fewer
false alarms), but also reduces Pd. A lower threshold increases Pfa
(more false alarms), but also increases Pd.

3. Receiver Bandwidth and Integration Time: These affect the noise power.

For a fixed threshold, Pfa can be thought of as the fraction of time that noise
alone would exceed the threshold. This directly relates to the clutter and noise
"spikes" that an operator might see on a display in the absence of targets.
Typical values for radar systems are very small, e.g., 10—6 (one false alarm per
million decision opportunities) to 10-8 or even lower, depending on the
system's operational requirements.

Probability of Detection (Pd):

Pd is the probability that the radar receiver correctly declares a target present
when a target signal is actually present, along with noise.

Pd=P(Detect|Signal + Noise)

Pd is determined by:

1. Signal-to-Noise Ratio (SNR): This is the most dominant factor. A higher
SNR means the target signal is stronger relative to the noise, making it
easier to distinguish from noise, and thus leading to a higher Pd.

2. The detection threshold (VT): As discussed, a lower threshold increases
Pd.



3. Target Fluctuation Characteristics (Swerling Models): Real targets do

not reflect radar energy with a constant amplitude. They "fluctuate"” due
to changes in aspect angle, polarization, and multipath effects. These
fluctuations significantly impact Pd.

Number of Integrated Pulses (N): By coherently or non-coherently
integrating (summing) multiple echoes from the same target, the
effective SNR improves, leading to a higher Pd.

5.4.2 Their Relationship and Factors Influencing Them

Pd and Pfa are intimately related through the detection threshold and the SNR.
For a given SNR, increasing Pd (e.g., by lowering the threshold) will inevitably
increase Pfa. Conversely, decreasing Pfa (e.g., by raising the threshold) will
inevitably decrease Pd. This fundamental trade-off is precisely what ROC
curves illustrate.

Factors Influencing Pfa and Pd:

Signal-to-Noise Ratio (SNR): As mentioned, SNR is the primary
determinant of Pd for a given Pfa. The higher the SNR, the better the
detection performance. SNR depends on:

o Transmitted Power (Pt)
Antenna Gain (G)
Target Radar Cross Section (o)
Range (R)
System Noise Temperature (Ts)
Receiver Bandwidth (B)

o Pulse Integration (N)
Noise Statistics: Typically assumed to be additive white Gaussian noise
(AWGN). If noise is non-Gaussian or colored, more complex processing
is needed.
Detection Threshold: The judicious selection of the detection threshold
is crucial. It is often set to achieve a desired constant Pfa over time,
which might require adaptive thresholding (e.g., Constant False Alarm
Rate - CFAR - processing) to account for varying noise or clutter levels.
Target Fluctuation (Swerling Models): This is a very significant factor. If
a target's radar cross-section (RCS) fluctuates (changes rapidly from
pulse to pulse or scan to scan), it makes detection harder. Strong pulses
might occur, but also very weak ones that fall below the threshold. The
average RCS might be high, but the instantaneous RCS can be low.
Number of Integrated Pulses (N): When multiple pulses are integrated,
the SNR increases by a factor related to N (e.g., N for coherent
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integration, or N for non-coherent integration). This improves
Pd for a given Pfa.

e Clutter: Strong unwanted echoes from stationary objects or weather can
significantly increase the effective noise level, making it harder to detect
legitimate targets and leading to a higher Pfa or lower Pd if not properly
mitigated.

Numerical Example: Impact of SNR on Pd

Let's assume a specific fixed Pfa=10-6. For a simple "square-law" detector
(typical in non-coherent processing), the relationship between Pd, Pfa, and
SNR is often depicted in universal detection curves or through more complex
numerical evaluations (e.g., using Marcum's Q-function for non-fluctuating
targets).

Without going into the complex mathematical functions (as they require
external reference or complex derivation), let's illustrate the concept:

e If SNR =10 dB, for Pfa=10-6, Pd might be around 0.5 (50%).

e If SNR =13 dB (an increase of 3 dB, or a doubling of signal power), for
the same Pfa=10-6, Pd might increase significantly to around 0.9 (90%).
This clearly demonstrates that even a small increase in SNR can lead to
a substantial improvement in the probability of detection. This
highlights the importance of maximizing SNR through good radar
design and matched filtering.

5.5 Modified Radar Range Equation with Swerling
Models

The basic Radar Range Equation provides a foundational understanding of the
maximum range of a radar system, assuming a non-fluctuating (constant
Radar Cross Section - RCS) target. However, real-world targets, especially
complex ones like aircraft, often exhibit significant fluctuations in their RCS as
they change aspect angle relative to the radar. To account for this variability
and provide more realistic performance predictions, Swerling Models are
incorporated into the radar range equation.

5.5.1 Incorporating Target Fluctuation Models (Swerling I-1V)

The classical Radar Range Equation for a non-fluctuating target (sometimes
called Swerling 0 or Swerling V, which are ideal cases) is given by:



Rmax4=(41)2SminPtGAeo

Where:

Rmax is the maximum range.

Pt is the transmitted peak power.

G is the antenna gain.

Ae is the effective aperture of the antenna.

o is the Radar Cross Section (RCS) of the target (assumed constant).
Smin is the minimum detectable signal power at the receiver, which is
the product of noise power Pn and the minimum detectable
Signal-to-Noise Ratio (SNR) required for detection,
(SNRmin)non-fluctuating.

Smin=kTsBF(SNRmin)non-fluctuating

where k is Boltzmann's constant, Ts is system noise temperature, B is
noise bandwidth, F is noise figure.

The issue with this equation is that o is rarely constant. Swerling recognized
this and proposed statistical models for target RCS fluctuations, which
profoundly impact Pd and thus the predicted range. These models are based
on chi-squared distributions with different degrees of freedom, representing
different types of targets and fluctuation rates.

The four primary Swerling models are:

Swerling I: This model represents a target whose RCS fluctuates slowly
from scan to scan (i.e., the RCS is constant over an entire
scan/illumination time, but changes independently for the next scan).
The probability density function (PDF) of the RCS follows an exponential
distribution. This model is often used for large, complex targets like
bomber aircraft.

o Impact: Requires significantly more SNR (or higher transmitted
power) than a non-fluctuating target to achieve the same Pd. The
radar has to "wait" for the target to fluctuate into a strong
reflection.

Swerling II: Similar to Swerling I, but the RCS fluctuates rapidly from
pulse to pulse within a single scan. Each received pulse from the target
has an independent RCS value. The PDF is also exponential. This model
is typical for rapidly changing aspect angles or targets with many
independent scatterers.

o Impact: Due to pulse-to-pulse independence, averaging over
many pulses helps "smooth out" the fluctuations, making Pd less
sensitive to instantaneous low RCS values compared to Swerling |
for the same average RCS. For the same number of integrated



pulses, Swerling Il generally requires lower SNR than Swerling |
for the same Pd.

e Swerling lll: This model represents a target whose RCS fluctuates slowly
from scan to scan, but with a different statistical distribution
(chi-squared with four degrees of freedom, or two independent
exponential components). This applies to targets that can be modeled
as having a few dominant scatterers.

o Impact: Performance lies between Swerling | and Swerling IV.

e Swerling IV: Similar to Swerling lll, but the RCS fluctuates rapidly from
pulse to pulse. The PDF is the same as Swerling lIl.

o Impact: Generally requires the least amount of average SNR for a
given Pd among the fluctuating models, as the rapid fluctuations
and two dominant scatterers provide more "opportunities" for a
strong return within a pulse train.

Modified Radar Range Equation incorporating Swerling Models:

To account for these fluctuations, the concept of a "detection degradation
factor" or "fluctuation loss" is introduced. Alternatively, the minimum
detectable SNR is adjusted for each Swerling case and desired Pd and Pfa.

The modified range equation is typically expressed by solving for the required
SNR at the receiver for a given Pd, Pfa, and number of integrated pulses (N),
for each Swerling model. These values are often found from published curves
or detailed numerical calculations.

The general form remains:
Rmax4=(41)3(SNRreqBFkTOLsys)PtG2A20™

Or, more simply, where SNRreq is the minimum SNR required for a given Pd
and Pfa for a specific Swerling model and number of integrated pulses.

Rmax4=(41)2Smin(Swerling, Pd,Pfa,N)PtGAec™

Here, 07 is the average RCS of the target. The Smin (or SNRreq) value will be
significantly higher for fluctuating targets, especially Swerling I, compared to a
non-fluctuating target for the same Pd and Pfa.

Key takeaways:

e For a given average RCS (07), Pd, and Pfa, fluctuating targets (Swerling
I-IV) always require a higher SNR than a non-fluctuating target (Swerling
0) to achieve the same detection performance.



Swerling | and Il models (scan-to-scan fluctuations) are generally harder
to detect than Swerling Il and IV models (pulse-to-pulse fluctuations) for
the same number of integrated pulses, because pulse integration is less
effective in smoothing out fluctuations that are constant over many
pulses.

The actual Pd versus SNR curves (often plotted in charts) will be
different for each Swerling model.

Numerical Example: Impact of Swerling Models on Required SNR

Consider a radar system aiming for a Probability of Detection (Pd) of 0.9 and a
Probability of False Alarm (Pfa) of 10-6, integrating 10 pulses (N=10).

Using standard radar performance charts (which are derived from the Swerling
models and detection theory, and typically found in radar textbooks), the
approximate required SNR (per pulse, assuming non-coherent integration)
might be:

Non-fluctuating (Swerling 0): Approximately 8 dB (for
Pd=0.9,Pfa=10-6,N=10)

Swerling | (Scan-to-scan, exponential): Approximately 15 dB
Swerling Il (Pulse-to-pulse, exponential): Approximately 10 dB
Swerling lll (Scan-to-scan, 4 deg. of freedom): Approximately 13 dB
Swerling IV (Pulse-to-pulse, 4 deg. of freedom): Approximately 9 dB

This example clearly shows that:

1.

2.

Fluctuating targets require higher SNR than non-fluctuating targets for
the same performance.

Targets fluctuating pulse-to-pulse (Swerling Il, IV) require less SNR than
those fluctuating scan-to-scan (Swerling |, lll) for the same number of
integrated pulses, demonstrating the benefit of pulse integration on
rapidly fluctuating targets.

This concludes Module 5, providing a comprehensive understanding of the
statistical nature of radar detection and the critical role of waveform and target
characteristics in determining radar system performance and limitations.
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